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Abstract We present a new high-resolution, non-oscillatory semi-discrete central scheme
for one-dimensional two-layer shallow-water flows along channels with non-uniform rect-
angular cross sections and bottom topography. The scheme extends existing central semi-
discrete schemes for hyperbolic conservation laws and it enjoys two properties crucial for
the accurate simulation of shallow-water flows: it preserves the positivity of the water height,
and it is well balanced, i.e., the source terms arising from the geometry of the channel are
discretized so as to balance the non-linear hyperbolic flux gradients. Along with a detailed
description of the scheme and proofs of these two properties, we present several numerical
experiments that demonstrate the robustness of the numerical algorithm.

Keywords Hyperbolic systems of conservation and balance laws · Semi-discrete
schemes · Saint-Venant system of shallow-water equations · Non-oscillatory
reconstructions · Channels with irregular geometry

1 Introduction

1.1 The Balance Law

In this paper we present a second-order accurate, non-oscillatory semi-discrete central
scheme for one-dimensional, two-layer shallow-water flows along channels with non-
uniform rectangular cross sections and bottom topography. For nearly horizontal flows, the
depth average of Euler equations results in the balance law, [1, 7]

∂A1

∂t
+ ∂Q1

∂x
= 0, (1a)
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Fig. 1 Left: overview of a channel with a parabolic contraction. Right: flow profile for a flow described by
system (1a)–(1d)
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where Ai , hi , and σ(x) stand, respectively, for the wet cross-section of each layer, the thick-
ness of layer i (i = 1,2 representing, respectively, the lower and upper layers), and the
channel breadth, i.e., Ai = σhi , Qi is the discharge, i.e., Qi = Aiui , with ui denoting the
fluid velocity of layer i, B(x) describes the bottom topography of the channel, g is the ac-

celeration of gravity, and, r = ρ2

ρ1
≈ 1, is the ratio of the fluid densities (see Fig. 1). The

geometry of the channel, given by σ(x) and B(x), need not to be continuous.

1.2 Properties of the System

The non-conservative terms on the right hand side of the balance law (1a)–(1d) prevent us
from writing the system in conservation form, yet these terms need to be taken into account
when determining the underlying characteristic structure of the system. In order to find its
characteristic decomposition, we write the system in the form,

∂v

∂t
+ ∂

∂x
f (v) = S1

(
v,σ,σ ′,B ′)+ S2(v, vx, σ ) (2)

where S2(vx) = (0, rgσh2
∂h1
∂x

,0,−gσh2
∂h1
∂x

)� holds the non-conservative products of
∂h1

∂x
and S1(v, σ,σ ′,B ′) the remaining geometric source terms.

This allows us to write the system in non-conservative quasilinear form

∂v

∂t
+ A

∂v

∂x
= S̃1(x, v) (3)
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where A stands for the modified Jacobian,

A = df

dv
−

⎛
⎜⎜⎜⎜⎝

0 0 0 0

rgh2 0 0 0

0 0 0 0

−gh2 0 0 0

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

0 1 0 0

gh1 − u2
1 2u1 rgh1 0

0 0 0 1

gh2 0 gh2 − u2
2 2u2

⎞
⎟⎟⎟⎟⎠ . (4)

The eigen values of this modified Jacobian are given by the roots of the characteristic poly-
nomial

(
λ2 − 2u1λ + u2

1 − gh1
)(

λ2 − 2u2λ + u2
2 − gh2

)= rgh1h2, (5)

which cannot be computed explicitly. For the most part, however, we are concerned with
flows such that r ∼ 1 and u1 ∼ u2 (e.g., oceanic flows), in which case, a first order expansion
in the terms 1 − r and u1 − u2, yields the approximations, [2]

λ1,2 ≈ um ±√
g(h1 + h2), (6a)

λ3,4 ≈ uc ±
√

(1 − r)g
h1h2

h1 + h2

(
1 − (u1 − u2)2

(1 − r)g(h1 + h2)

)
, (6b)

where

um = h1u1 + h2u2

h1 + h2
and uc = h1u2 + h2u1

h1 + h2
. (7)

This indicates that the system may loose hyperbolicity if the condition

(u1 − u2)
2 ≤ (1 − r)g(h1 + h2) (8)

We note that this condition is not strict since (8) is only approximate.
The system (1a)–(1d) is endowed with the entropy function

E (x, t) = σ

[
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)
+ ρ2h2
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2
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and satisfies the entropy inequality
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Smooth steady-state solutions of (1a)–(1d) satisfy

Qi = σhiui = Const., i = 1,2, (11a)

E1 = 1

2
u2

1 + g(h1 + rh2 + B) = Const., (11b)

E2 = 1

2
u2

2 + g(h1 + h2 + B) = Const., (11c)



J Sci Comput

where, for example, one readily recognizes the trivial steady-state of rest

ui(x) = 0 (i = 1,2),

w1(x) = h1(x) + B(x) = Const., and w2(x) = w1(x) + h2(x) = Const.
(12)

The parameters Qi and Ei (together with the topography B(x) and channel geometry σ(x))
determine the steady-state solution as the root of the nonlinear system of (12), [1–3, 8, 21,
27]. To this end, it is convenient to define the internal Froude number of each layer,

F 2
i = u2

i

g′hi

, i = 1,2, (13)

where g′ = (1 − r)g stands for the reduced gravity, and the composite Froude number,

G2 = F 2
1 + F 2

2 . (14)

These dimensionless quantities describe the essential non-linearity of the flow, flows with
composite Froude number G2 < 1 are said to be subcritical or fluvial, and flows with Froude
number G2 > 1 supercritical or torrential. The interplay between the breath of the channel,
σ(x), and the topography, B(x), controls the flow. For example, if the crest of the topography
(B ′(x) = 0) and the throat of the channel (σ ′(x) = 0) occur at the same point, then at that
point either the solution is symmetric, (hi)x = 0, or the flow reaches criticality G2 = 1.
Channel geometries where the crest and throat occur at different points lead to more complex
flow profiles. In some cases, the flow will reach criticality at a point located between the crest
of the channel’s floor and its throat, and in cases where the crest and the throat are relatively
far apart from each other, critical points may occur at either of those two locations or even
at both [1–3, 8, 21, 27].

1.3 Numerical Simulation of Two-Layer Shallow-Water Flows

The system admits discontinuous solutions and requires robust numerical schemes that are
suitable for calculating discontinuous flows. For such flows, the nonconservative products
may be large relative to the geometric source terms and render the solution very sensitive
to the details of their discretization and introduce spurious oscillations in the approximate
solutions.

Changes in the solution of (1a)–(1d) in time arise when flux gradients are out of balance
with the source terms. The simulation of near steady-state flows require numerical schemes
capable of recognizing such balance. In [13] it is shown that numerical schemes that are
able to recognize and respect the balance between flux gradients and source terms often
give superior results when computing such near steady-state flows, whereas non-oscillatory
schemes that simply employ a high-order discretization of source terms without regard for
balance may trigger the onset of oscillations –possibly larger than the small perturbations,
and fail to capture steady-states. Perfectly recognizing such balance may not always be
possible, and schemes that respect steady-state solutions either exactly or to the order of the
numerical approximation are commonly called ‘well-balanced’, [1, 4, 13, 15, 16, 24, 26].

Another challenge arises when computing solutions where h1 → 0 (e.g., internal dam
break) and/or h2 → 0. In such cases, the truncation error of the numerical scheme may
cause the depth of either layer, h1 or h2, to become negative, causing the computation to
fail. Positivity preserving schemes have the desirable property that if the data has positive
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(non-negative) depth, so does the numerical solution. Positivity preserving schemes enjoy
enhanced stability near dry states.

In this paper, we introduce a semi-discrete central scheme for calculating flows described
by (1a)–(1d). The scheme is second order accurate, well-balanced and positivity preserving.
Nonoscillatory schemes based on central differencing offer a robust, yet simple, approach
for computing the discontinuous solutions of hyperbolic problems, see for example [5, 6, 12,
17, 20, 22]. Several central schemes have been extended to handle systems with geometric
source terms. In [24] Russo introduces a fully-discrete, well balance central scheme for flows
along channels of constant width, and in [13, 15] several semi-discrete central schemes for
one- and two-dimensional shallow-water flows are presented. The central scheme described
in this work extends the work in [13, 15, 16, 23] to flows in variable geometry. The numerical
solutions of two-layer flows along channels with arbitrary geometry have been addressed
in [7], where an Q-scheme for a hyperbolic system similar to the balance law (1a)–(1d) is
proposed, and in [26] where single-layer flows along channels with arbitrary geometries are
simulated with an upwind scheme.

The proposed scheme is described in Sect. 2, and it’s established to preserve the posi-
tivity of water height of the bottom layer and to be well-balanced. Numerical solutions are
presented in Sect. 3 for a variety of flow regimes, demonstrating the scheme’s accuracy and
robustness and demonstrating its ability to simulate a wide range of flows.

2 A Central Scheme for One-Dimensional Two-Layer Shallow-Water Flows

In this section we construct a central scheme for the accurate simulation of two-layer
shallow-water flows described by the balance law (1a)–(1d). In particular, we seek a scheme
that is positivity preserving and well-balanced. The scheme extends previous works in
[4, 13, 15, 16] to two-layer flows in variable geometry. This extension is not trivial; the
non-conservative products require special treatment so as to guarantee stability. And the
varying width of the channel makes balancing more difficult; while in the constant channel
width model (σ ≡ 1), well-balancing may be accomplished solely by choosing an appropri-
ate discretization of the source term, in the variable geometry case, the conserved variables
Ai = σhi and Qi = σhiui depend on the geometry σ , which renders steady-state preserva-
tion and positivity more strongly coupled with, for example, the polynomial reconstruction
of the conserved variables.

Following [16], we reformulate (1a)–(1d) in terms of the total elevation of the bot-
tom layer, w1 = h1 + B and its total area, AT

1 = A1 + σB = σw1; we also add the term
(gσ ( 1

2h1 + B)h1)x to both sides of (1b), and (gσ ( 1
2h2 + h1 + B)h2)x to both sides of (1d).

These linear transformation leads the equivalent formulation

∂AT
1

∂t
+ ∂Q1

∂x
= 0 (15a)

∂Q1

∂t
+ ∂

∂x

(
Q2

1

A1
+ gσŵ2h1

)
= gŵ2h1σ

′ + gσŵ2
∂h1

∂x
(15b)

∂A2

∂t
+ ∂Q2

∂x
= 0 (15c)

∂Q2

∂t
+ ∂

∂x

(
Q2

2

A2
+ gσw2h2

)
= gw2h2σ

′ + gσw2
∂h2

∂x
(15d)

where w2 = h2 + w1 and ŵ2 = rh2 + w1.
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This formulation preserves weak solutions allows the numerical scheme to detect
changes (or the lack of them) in the total water elevation of the bottom layer, w1, which
in turn, facilitates ensuring the preservation of steady-states of rest. Furthermore, the non-
conservative source terms are scaled to O(w2), so that when the total water elevation is
measured as the displacement from the water surface at rest (see Fig. 1), these terms are
small and do not affect the stability of the scheme.

2.1 Semi-Discrete Central Formulation

We begin by describing the semi-discrete central scheme framework for approximating so-
lutions for hyperbolic conservation laws (consult [14] and [17] for further details),

vt + f (v)x = 0. (16)

For a fixed spatial scale �x, we consider the partition of the solution domain into the grid
cells Ij := [xj − �x/2, xj + �x/2], and denote by vj (t)the cell average of v(x, t) over the
cell Ij ,

vj (t) = 1

�x

∫ x
j+ 1

2

x
j− 1

2

v(x, t)dx.

Integrating (16) over each Ij results in the equivalent semi-discrete formulation

d

dt
vj (t) = − 1

�x

(
f
(
v(xj+ 1

2
, t)
)− f

(
v(xj− 1

2
, t)
))

. (17)

Equation (17) is approximated by the collection of (semi-discrete) ODEs:

d

dt
vj (t) = −

Hj+ 1
2
(t) − Hj− 1

2
(t)

�x
, (18)

where the flux at cell interfaces, f (v(xj± 1
2
, t)), is approximated by the numerical flux

Hj± 1
2
(t) given by

Hj± 1
2
(t) =

f (v+
j± 1

2
(t)) + f (v−

j± 1
2
(t))

2
−

aj± 1
2

2

(
v+

j± 1
2
(t) − v−

j± 1
2
(t)
)
. (19)

Here, the interface point-values of the solution, v±
j± 1

2
(t), are recovered from the cell averages

{vj (t)} via a non-oscillatory polynomial reconstruction v(x, t) ≈ R(x; t) = ∑
j pj (x; t) ·

1Ij , i.e.,

v−
j+ 1

2
:= pj (xj+ 1

2
) and v+

j+ 1
2

:= pj+1(xj+ 1
2
), (20)

(consult Sect. 2.2.1 for the definition of the polynomials pj (x)) and aj+ 1
2

stands for (an

estimate of) the maximum wave speed of the conservation law, (16), at the cell interface
xj+ 1

2
, given by the spectral radius of the Jacobian matrix of f (v), ∂f/∂v. The zero order

reconstruction reproduces the well-known LxF scheme [18].
This semi-discrete formulation, (18), and its central-upwind sequel, [14], provide a gen-

eral framework for non-oscillatory central schemes, requiring for their actual implementa-
tion two ingredients: (i) a non-oscillatory polynomial reconstruction of the interface values
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{v±
j± 1

2
}j from their cell averages {vj (t)}j , and (ii) an evolution routine (i.e., an ODE solver)

to update these cell averages according to (18).
In analogy, the semi-discrete formulation for the balance law

vt + f (v)x = S(v, vx, x), (21)

yields the semi-discrete system

d

dt
vj (t) = −

Hj+ 1
2
(t) − Hj− 1

2
(t)

�x
+ Sj

(
v, vx, σ, σ ′) (22)

where the numerical fluxes, Hj± 1
2
, are given by (19), and the cell average of the source

term, Sj , amounts to (see Appendix B for details)

Sj

(
v, vx, σ, σ ′) = 1

�x

[
1

2

∫ x+
j− 1

2

x−
j− 1

2

S
(
v, vx, σ, σ ′)dx +

∫ x−
j+ 1

2

x+
j− 1

2

S
(
v, vx, σ, σ ′)dx

+ 1

2

∫ x+
j+ 1

2

x−
j+ 1

2

S
(
v, vx, σ, σ ′)dx

]
. (23)

For the two-layer shallow-water system, (15a)–(15d),

v =

⎛
⎜⎜⎜⎜⎝

AT
1

Q1

A2

Q2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

σw1

σh1u1

σh2

σh2u2

⎞
⎟⎟⎟⎟⎠ , f (v) =

⎛
⎜⎜⎜⎜⎝

σh1u1

σh1u
2
1 + gσŵ2h1

σh2u2

σh2u
2
2 + gσw2h2

⎞
⎟⎟⎟⎟⎠ , (24)

and

S
(
v, vx, σ, σ ′)=

⎛
⎜⎜⎜⎜⎝

0

g(ŵ2h1σ
′ + σŵ2

∂h1
∂x

)

0

g(w2h2σ
′ + σw2

∂h2
∂x

)

⎞
⎟⎟⎟⎟⎠ . (25)

In addition to the non-oscillatory polynomial reconstruction and the evolution routine
needed for the implementation of (18), the approximation of balance laws requires a suitable
discretization of the integral of the source term in (23).

2.2 Non-oscillatory Second-Order Reconstruction

In order to recover the interface values v±
j± 1

2
(t) in (19) from the cell averages vj (t), we

employ a piece-wise linear reconstruction,

v(x, t) = R
(
x;v(t)

) :=
∑

j

pj (x). (26)

This reconstruction procedure is at the heart of high-resolution non-oscillatory central
schemes, and requires the coefficients of the polynomials {pj (x)} to be determined so that
R(x;v(t)) satisfies the following three essential properties:
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– P1—Conservation of cell averages: pj (x) = vj (t).
– P2—Accuracy: R(x;v(t)) = v(x, t) + O((�x)2) (in smooth regions).
– P3—Non-oscillatory behavior of

∑
j pj (x).

For the shallow-water system (15a)–(15d) we also require that the reconstructed values of
the total area of the bottom layer, AT

1 , the wet area of the second layer, A2, and the corre-
sponding values of their total height, w1 and h2, satisfy the following properties:

– P4—Flux gradient and source balancing: for steady-sates of rest, the interface values of
the water heights, w1 and h2, must be reconstructed so as to satisfy

w±
1,j+ 1

2
= Const., w±

2,j+ 1
2

= Const. and ŵ±
2,j+ 1

2
= Const. (27)

– P5—Positivity: the reconstructed values of w±
1,j± 1

2
(t) and h±

2,j± 1
2
(t) must yield

h±
i,j± 1

2
(t) ≥ 0, so as to ensure the positivity of hi,j (t + �t) (i = 1,2).

We note that properties P4 and P5, tie the channel’s geometry to the flow variables (i.e.,
AT

1 = σ(h1 + B) and A2 = σh2), and, thus, require the bottom topography and channel’s
width to be discretized so that the interface values of w1 and h2 are consistent with the
corresponding areas, AT

1 and A2. To this end, we evaluate the bottom topography and the
channel’s breath to the left/right of the cell interfaces xj+ 1

2
, denoting the corresponding

values by the superscripts − and +, that is,

σ±
j+ 1

2
:= σ

(
x±

j+ 1
2

)
and B±

j+ 1
2

:= B
(
x±

j+ 1
2

)
. (28)

This allows us to consider discontinuous bathimetry data from which we can define the
averages and differences

Bj = 1

2

(
B+

j− 1
2
+ B−

j+ 1
2

)
and �Bj =

B−
j+ 1

2
− B+

j− 1
2

�x
, (29)

for the bottom, and

σ j = 1

2

(
σ+

j− 1
2
+ σ−

j+ 1
2

)
and �σj =

σ−
j+ 1

2
− σ+

j− 1
2

�x
, (30)

for the width. Which in turn allow us to approximate the channel’s bottom and walls, re-
spectively, with the piecewise linear reconstructions

B(x) = Bj + �Bj(x − xj ), and σ(x) = σ j + �σj(x − xj ) for xj− 1
2

< x < xj+ 1
2
,

(31)

a choice that also guaranties properties P1–P3 for the geometry and is consistent with the
second order accuracy sought for the scheme.

2.2.1 Minmod Reconstruction: Properties P1–P3

To guarantee properties P1–P3, we employ a second-order minmod reconstruction,
[10, 19]. The total area of the bottom layer, AT

1 , the wet area of the top layer, A2, and
both discharges, Qi (i = 1,2), are reconstructed from their cell averages as the piecewise
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linear functions (the reconstruction is applied to values at time t , thus we can avoid the
explicit reference to the time variable for its description)

pj (x) = vj + v′
j (x − xj ), (32)

with the slopes v′
j calculated as

v′
j = 1

�x
minmod(α�−vj ,�0vj ,α�+vj ), (33)

where 1 ≤ α < 2, and

minmod(x1, x2, x3, . . . , xk) =

⎧⎪⎨
⎪⎩

minj (xj ) if xj > 0 ∀j,

maxj (xj ) if xj < 0 ∀j,

0 otherwise.

(34)

The choice of limiter (33) allows for sharper, less dissipative, reconstructions than the
usual two argument minmod limiter corresponding to α = 1. For the numerical examples
presented in Sect. 3 the best results are obtained with the value α = 1.4, a value that we
determine empirically.

2.2.2 Reconstruction of h1 and h2: Properties P4 and P5

In order to produce a well-balanced positivity preserving scheme, we first recover the cell
averages of w1 and h2 from those of AT

1 and A2 respectively as

w1,j := A
T

1,j

σj

, and h2,j := A2,j

σj

. (35)

For the flows calculated in Sect. 3 below, the initial conditions are given for ui (or Qi ,

i = 1,2), w1, and h2, allowing us to initialize A
T

1,j := σ jw1,j and A2,j := σ jh2,j (other
values can be chosen within the second order accuracy of the scheme. The interface values
w∓

1,j± 1
2

and h∓
2,j± 1

2
are then obtained using the minmod reconstruction (32)–(34).

Clearly, these reconstructed values will remain constant if the corresponding cell aver-
ages w1,j and h2,j are constant for all j , and so will be the total flow depths w∓

2,j± 1
2

and

ŵ∓
2,j± 1

2
, as needed to preserve steady-states of rest.

To ensure the positivity of h∓
1,j± 1

2
, we follow [15], and limit the slope of the reconstructed

values of w1 as follows (see Fig. 2):

if w+
1,j− 1

2
< B+

j− 1
2
, then set w′

1,j := 2
(
w1,j − B+

j− 1
2

)
,

⇒ w+
1,j− 1

2
= B+

j− 1
2
, and w−

1,j+ 1
2

= w1,j + 1

2
w′

1,j , (36)

or

if w−
1,j+ 1

2
< B−

j+ 1
2
, then set w′

1,j := 2
(
B−

j+ 1
2
− w1,j

)
,

⇒ w−
1,j+ 1

2
= B−

j+ 1
2
, and w+

1,j− 1
2

= w1,j − 1

2
w′

1,j , (37)
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Fig. 2 Modified reconstruction
of total water height of the
bottom layer, w1, over the
piecewise linear approximation
of bottom topography (dashed
line). The minmod reconstruction
is depicted by dotted lines over
cell averages (black dots), the
modified reconstruction is
depicted by a black solid line, the
interface pointvalues of w1,
w

1,j± 1
2

, are depicted by black

squares

This linear reconstruction of w1 clearly satisfies property P5 for h1, w±
1,j+ 1

2
≥ B±

j+ 1
2
, which

in turn will guarantee the positivity of h1,j (t + �t), whose interface values are defined as

h−
1,j+ 1

2
:= w−

1,j+ 1
2
− B−

j+ 1
2

h+
1,j− 1

2
:= w+

1,j− 1
2
− B+

j− 1
2
.

(38)

To guarantee positivity of layer two, we follow a similar reconstruction for w2 = w1 + h2,
replacing w1 with w2, and B with w1 in (36) and (37).

2.3 Regularization of Flow Velocities and Discharges for Thin Layers

The fluxes f in (24) require the pointwise values of the flow velocity u∓
i,j± 1

2
(i = 1,2).

Recovering the flow velocity via Qi/Ai may be inaccurate when hi (hence both Qi and
Ai = σhi ) is very small, and may lead to instabilities. To prevent this, we follow the de-
singularization strategy proposed in [15], and compute the flow velocities, ui , according
to

ui =
√

2AiQi√
A4

i + max(A4
i , ε)

, (39)

with ε = (�x)4. When Ai is small, we must recalculate the discharge as Qi := Ai · ui so as
to ensure the well balance and positivity properties (consult [15] for a detailed discussion of
this and other desingularization techniques).

2.4 Balance: Discretization of the Source Term and Preservation of Steady-States

In the context of shallow-water flows, a useful guiding principle in the discretization of the
source term in (1a)–(1d) and its cell average in (22) is that the resulting scheme is able to
recognize and respect steady-state solutions. Analytically, such solutions are characterized
by a perfect balance between the flux gradient and the source terms. Ideally, this property
should be inherited by the scheme. In practice, however, a discrete perfect balance may not
be possible to achieve for general steady-states, so we seek a discretization that perfectly
respects steady-states of rest and settle for respecting general steady states to the order of
the numerical approximation.
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In order to achieve this balance between flux gradient and source terms, we calculate
the numerical fluxes in (22) that result when steady-state of rest conditions (ui = 0,wi =
Const., i = 1,2) are assumed, and seek a high-order discretization of the source term in-
tegrals that matches the numerical fluxes under these conditions. Under these steady-state
conditions, the second and fourth components of the numerical flux Hj± 1

2
reduce to

H
Q1

j+ 1
2
(t) =

f Q1(v−
j+ 1

2
) + f Q1(v+

j+ 1
2
)

2
= g

2

(
σ−

j+ 1
2
ŵ−

2,j+ 1
2
h−

1,j+ 1
2
+σ+

j+ 1
2
ŵ+

2,j+ 1
2
h+

1,j+ 1
2

)
, (40)

and

H
Q2

j+ 1
2
(t) =

f Q2(v−
j+ 1

2
) + f Q2(v+

j+ 1
2
)

2
= g

2

(
σ−

j+ 1
2
w−

2,j± 1
2
h−

2,j+ 1
2
+σ+

j+ 1
2
w+

2,j+ 1
2
h+

2,j+ 1
2

)
, (41)

respectively. So that the corresponding flux difference terms in (22) read

−
H

Q1

j+ 1
2
(t) − H

Q1

j− 1
2
(t)

�x
= − g

2�x

(
σ+

j+ 1
2
ŵ+

2,j+ 1
2
h+

1,j+ 1
2
+ σ−

j+ 1
2
ŵ−

2,j+ 1
2
h−

1,j+ 1
2

− σ+
j− 1

2
ŵ+

2,j− 1
2
h+

1,j− 1
2
− σ−

j− 1
2
ŵ−

2,j− 1
2
h−

1,j− 1
2

)
, (42)

and

−
H

Q2

j+ 1
2
(t) − H

Q2

j− 1
2
(t)

�x
= − g

2�x

(
σ+

j+ 1
2
w+

2,j+ 1
2
h+

2,j+ 1
2
+ σ−

j+ 1
2
w−

2,j+ 1
2
h−

2,j+ 1
2

− σ+
j− 1

2
w+

2,j− 1
2
h+

2,j− 1
2
− σ−

j− 1
2
w−

2,j− 1
2
h−

2,j− 1
2

)
. (43)

Since these two components of the numerical flux are analogous, we focus, for brevity, on
the first one of them, (42), and rewrite it as

−
H

Q1

j+ 1
2
(t) − H

Q1

j− 1
2
(t)

�x
= − g

�x

[
1

2

(
σ+

j− 1
2
ŵ+

2,j− 1
2
h+

1,j− 1
2
− σ−

j− 1
2
ŵ−

2,j− 1
2
h−

1,j− 1
2

)

+ (
σ−

j+ 1
2
ŵ−

2,j+ 1
2
h−

1,j+ 1
2
− σ+

j− 1
2
ŵ+

2,j− 1
2
h+

1,j− 1
2

)

+ 1

2

(
σ+

j− 1
2
ŵ+

2,j− 1
2
h+

1,j− 1
2
− σ−

j− 1
2
ŵ−

2,j− 1
2
h−

1,j− 1
2

)]
(44)

The first and third differences on the right of this equation represent, respectively, the jump
of the flux, f (v), across the left and right interfaces of the cell Ij , and the second, the net
flux inside the cell. Denoting the positive terms in these differences by the superscript R and
the negative ones by L, we can factor them into

σRŵR
2 hR

1 − σLŵL
2 hL

1 = 1

4

(
σR − σL

)(
ŵR

2 + ŵL
2

)(
hR

1 + hL
1

)

+ 1

4

(
σR + σL

)(
ŵR

2 + ŵL
2

)(
hR

1 − hL
1

)
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+ 1

4

(
σR − σL

)(
ŵR

2 − ŵL
2

)(
hR

1 + hL
1

)

+ 1

4

(
σR + σL

)(
ŵR

2 − ŵL
2

)(
hR

1 − hL
1

)
. (45)

And noting that the minmod reconstruction (32)–(34) of w1 and h2 will ensure that the
interface values w∓

2,j± 1
2

and ŵ∓
2,j± 1

2
remain constant for all j for the steady-state of rest, and

therefore, their differences in (44) (and the corresponding numerical flux of Q2) will vanish
(second line of (45)), the interface jumps reduce to

σ+
j± 1

2
ŵ+

2,j± 1
2
h+

1,j± 1
2
− σ−

j± 1
2
ŵ−

2,j± 1
2
h−

1,j± 1
2

= 1

4

(
ŵ+

2,j± 1
2
+ ŵ−

2,j± 1
2

)[(
σ+

j± 1
2
− σ−

j± 1
2

)(
h+

1,j± 1
2
+ h−

1,j± 1
2

)

+ (
σ+

j± 1
2
+ σ−

j± 1
2

)(
h+

1,j± 1
2
− h−

1,j± 1
2

)]
, (46)

and the net flux within the cell to

σ−
j+ 1

2
ŵ−

2,j+ 1
2
h−

1,j+ 1
2
− σ+

j− 1
2
ŵ+

2,j− 1
2
h+

1,j− 1
2

= 1

4

(
ŵ−

2,j+ 1
2
+ ŵ+

2,j− 1
2

)[(
σ−

j+ 1
2
− σ+

j− 1
2

)(
h−

1,j+ 1
2
+ h+

1,j− 1
2

)

+ (
σ−

j+ 1
2
+ σ+

j− 1
2

)(
h−

1,j+ 1
2
− h+

1,j− 1
2

)]
. (47)

This factorization of the numerical flux(es) difference (42) (and (43)), suggest the following
balanced discretization of the source term integrals on the right hand side of (22)

∫ x+
j± 1

2

x−
j± 1

2

(
ŵ2h1σ

′ + σŵ2
∂h1

∂x

)
dx

≈
ŵ+

2,j± 1
2
+ ŵ−

2,j± 1
2

2
·
h+

1,j± 1
2
+ h−

1,j± 1
2

2
· (σ+

j± 1
2
− σ−

j± 1
2

)

+
σ+

j± 1
2
+ σ−

j± 1
2

2
·
ŵ+

2,j± 1
2
+ ŵ−

2,j± 1
2

2
· (h+

1,j± 1
2
− h−

1,j± 1
2

)
, (48)

for the integrals across the cell interfaces at xj± 1
2
, and

∫ x−
j+ 1

2

x+
j− 1

2

(
ŵ2h1σ

′ + σŵ2
∂h1

∂x

)
dx

≈
ŵ−

2,j+ 1
2
+ ŵ+

2,j− 1
2

2
·
h−

1,j+ 1
2
+ h+

1,j− 1
2

2
· (σ−

j+ 1
2
− σ+

j− 1
2

)

+
σ−

j+ 1
2
+ σ+

j− 1
2

2
·
ŵ−

2,j+ 1
2
+ ŵ+

2,j− 1
2

2
· (h−

1,j+ 1
2
− h+

1,j− 1
2

)
, (49)
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for the integral of the source term across the cell Ij . And similarly,

∫ x+
j± 1

2

x−
j± 1

2

(
w2h2σ

′ + σw2
∂h2

∂x

)
dx

≈
w+

2,j± 1
2
+ w−

2,j± 1
2

2
·
h+

2,j± 1
2
+ h−

2,j± 1
2

2
· (σ+

j± 1
2
− σ−

j± 1
2

)

+
σ+

j± 1
2
+ σ−

j± 1
2

2
·
w+

2,j± 1
2
+ w−

2,j± 1
2

2
· (h+

2,j± 1
2
− h−

2,j± 1
2

)
, (50)

and

∫ x−
j+ 1

2

x+
j− 1

2

(
w2h2σ

′ + σw2
∂h2

∂x

)
dx

≈
w−

2,j+ 1
2
+ w+

2,j− 1
2

2
·
h−

2,j+ 1
2
+ h+

2,j− 1
2

2
· (σ−

j+ 1
2
− σ+

j− 1
2

)

+
σ−

j+ 1
2
+ σ+

j− 1
2

2
·
w−

2,j+ 1
2
+ w+

2,j− 1
2

2
· (h−

2,j+ 1
2
− h+

2,j− 1
2

)
, (51)

for the integrals of the source terms corresponding to the discharge of the top layer, Q2.
We observe that the approximations (48)–(49) balance exactly the right hand side of (42),

and (50)–(51) that of (43), provided properties P4 and P5 are satisfied. With this discretiza-
tion, the right hand side of the discharge equations in (22) vanishes for steady-state of rest.

To ensure preservation of total water height of the first layer, w1, and the height of the

second layer, h2, over time, the first and third components of the numerical fluxes, H
A

T
1

j± 1
2

and H
A2

j± 1
2
, must be calculated so that their differences yield

dA
T

1,j

dt
= 0, and

dA2,j

dt
= 0 (52)

when w1 = Const., h2 = Const., and ui ≡ 0 (i = 1,2). To this end, we approximate the
interface jump of the total area of the first layer in the numerical flux in (22) by

A
T,+
1,j+ 1

2
− A

T,−
1,j+ 1

2
≡ σ

(
x+

j+ 1
2

)
w1

(
x+

j+ 1
2
, t
)− σ

(
x−

j+ 1
2

)
w1

(
x−

j+ 1
2
, t
)

≈ σj+ 1
2

(
w+

1,j+ 1
2
− w−

1,j+ 1
2

)
, (53)

and the wet area of the second layer as

A+
2,j+ 1

2
− A−

2,j+ 1
2

≡ σ
(
x+

j+ 1
2

)
h2

(
x+

j+ 1
2
, t
)− σ

(
x−

j+ 1
2

)
h2

(
x−

j+ 1
2
, t
)

≈ σj+ 1
2

(
h+

2,j+ 1
2
− h−

2,j+ 1
2

)
, (54)

where

σj+ 1
2

= max
{
σ̃−

j+ 1
2
, σ̃+

j+ 1
2

}
, (55)
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with

σ̃−
j+ 1

2
:=

A
T,−
1,j+ 1

2

w−
1,j+ 1

2

and σ̃+
j+ 1

2
:=

A
T,+
1,j+ 1

2

w+
1,j+ 1

2

. (56)

Remarks

1. For smooth channel geometries, i.e., B−
j+ 1

2
= B+

j+ 1
2

and σ−
j+ 1

2
= σ+

j+ 1
2
, both the interface

jump of the flux (first and third differences on the right hand side of (44) and the corre-
sponding terms in the equation for Q2) and the integrals of the source term across the
cell interfaces, (48) and (50), vanish for the steady-state of rest, (12). For other steady-
states, even when B(x) is smooth, this cancellation may not occur, as h1 and h2 may
jump across the cell interfaces.

2. Approximating A
T,+
1,j+ 1

2
− A

T,−
1,j+ 1

2
and A+

2,j+ 1
2
− A−

2,j+ 1
2

respectively by (53) and (54) en-

sures that these terms vanish for steady-states of rest as required.
3. The choice of σj± 1

2
in (53) ensures positive values of the cell average of the water height

h1,j (t + �t) (see Appendix A); other choices are possible within the second order accu-
racy of the scheme.

2.5 Time Evolution

Given the reconstructed interface values at time t as described in Sect. 2.2,

v±
j± 1

2
(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A
T,±
1,j± 1

2
(t)

Q±
1,j± 1

2
(t)

A±
2,j± 1

2
(t)

Q±
2,j± 1

2
(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (57)

we estimate the maximum interface wave speeds of (15a)–(15d) as the maximum speed of
propagation as given by the first order approximation (6a)–(6b).

aj± 1
2

= max
i

∣∣λi(xj± 1
2
)
∣∣, (58)

and the ODE system (22) is numerically integrated using the second order Strong Stability
Preserving Runge-Kutta scheme, [9, 25],

v(1) = v(0) + �tC
[
v(0)

]
(59a)

v(2) = 1

2
v(0) + 1

2

(
v(1) + �tC

[
v(1)

])
(59b)

v(t + �t) := v(2), (59c)

with the numerical fluxes

C
[
v(t)

]= −
Hj+ 1

2
(v(t)) − Hj− 1

2
(v(t))

�x
+ Sj (t) (60)
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where Hj± 1
2

is given by (19), using (53) and (54), and the integrals of the source terms
appearing on the right of (22) approximated by (48)–(51).

2.6 Properties of the Scheme and Additional Remarks

To conclude this section, we summarize the two main properties of the semi-discrete cen-
tral scheme resulting from applying the discretization of the source term (48)–(51), along
with the reconstruction (32)–(38), and the SSP Runge-Kutta solver (59a), (59b), (60) to the
semi-discrete central formulation (22). (We defer the proofs of the following theorems to
Appendix A).

Theorem 1 Consider the balance law (15a)–(15d) and the semi-discrete central formula-
tion (22) with the spatial integrals of the source term approximated by (48)–(51), the in-
terface pointvalues of w1(x, t) and h1(x, t) given by (36)–(37) and (38), those of AT

1 (x, t),
A2(x, t), h2(x, t), and Qi(x, t) (i = 1,2) recovered by the minmod reconstruction (32)–
(34), with w2(x, t) = w1(x, t) + h2(x, t) and ŵ2(x, t) = w1(x, t) + rh2(x, t), and the jump
of the total area of the first layer and wet area of the second layer across the cell interfaces
approximated by (53)–(55). Then

(i) the system of ODEs (22) satisfies

d

dt

⎛
⎜⎜⎜⎜⎝

A
T

1,j (t)

A2,j (t)

Q1,j (t)

Q2,j (t)

⎞
⎟⎟⎟⎟⎠= 0 ∀j, (61)

for w1 = Const., h2 = Const., and ui ≡ 0 (i = 1,2), i.e., the central scheme is well-
balanced, and

(ii) if the cell averages A
T

1 (t) are such that

w1,j (t) − Bj ≥ 0, ∀j, (62)

then, the cell averages A
T

1 (t + �t) as evolved with forward Euler’s method (59a) and
(60) under the CFL limitation,

�t

�x
<

σj

2aj

∀j, (63)

where aj = max{aj− 1
2
σj− 1

2
, aj+ 1

2
σj+ 1

2
}, will yield

w1,j (t + �t) − Bj ≥ 0, ∀j. (64)

3 Numerical Results

In this section we present the numerical solutions of several prototype problems aimed at
demonstrating the properties of our central scheme and its ability to capture non-trivial
steady flows. We begin by validating the well balance property of the scheme and its be-
havior under small perturbations from the trivial steady-state, (12). We also evolve two sets
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of initial conditions that lead to delicate wave structures so as to validate the ability of our
Riemann solver free scheme to correctly detect and propagate these waves along the inter-
face of the two water layers. To conclude, we study the convergence of solutions evolved
with the central scheme to non-trivial steady-state solutions by comparing them to steady
flows computed under the rigid-lid assumption, h1 + h2 + B = Ho.

The flows are calculated along channels with varying width and bottom topography. For
each flow we consider different cases according to the location of the narrowest point along
the channel with respect to the location of the maximum elevation of the bottom topography
along the solution domain.

For modeling stratified flows, the regime r ≈ 1 is of particular interest, so unless other-
wise stated, for the results presented below, we follow [1–3, 7, 8, 16, 21] and set the ratio
of densities r = ρ2

ρ1
= 0.98, the value of the acceleration of gravity is taken as g = 9.81, and

the time step, �t , satisfies the CFL restriction

�t ≤ τ�x

maxj {aj+ 1
2
} , τ < 1, (65)

where aj+ 1
2

stands for an estimate of the spectral radius of the modified Jacobian (4). To this
end, using the bounds provided in [1], we let

c1 =√
gh1 and c2 =√

gh2, (66)

and order the estimates for the external eigen values, (6b)

μ1 = min
{
u1 −

√
1 + √

rc1, u2 −
√

1 + √
rc2

}
(67a)

μ2 = max
{
u1 +

√
1 + √

rc1, u2 +
√

1 + √
rc2

}
, (67b)

to bound the maximum speed of propagation at each cell interface by

aj+ 1
2

= max
{|μ1|, |μ2|

}
. (68)

We note here that while the proof of Theorem 1 requires τ < 1
2 , except for the interface

propagation problems, all the numerical experiments below were computed with values 1
2 <

τ < 1. The same flows simulated with a more restrictive CFL number, τ < 1
2 , did not yield

substantially better results.

3.1 Steady-State of Rest and Small Perturbation from Rest

We begin by testing the well balance property of the scheme, Theorem 1, for the steady-state
of rest and small deviations from it.

3.1.1 The Trivial Steady-State of Rest

In order to test the well balance property, we evolve the conditions describing the steady-
state of rest,

u1(x,0) = u2(x,0) = 0, w1(x,0) = −1, and h2(x,0) = 1. (69)
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These initial conditions are evolved over a smooth bottom topography given by

B(x) =
{

1
4 (1 + cos π(x−0.5)

0.1 ) − 2 if 0.4 ≤ x ≤ 0.6,

−2 otherwise,
(70)

and also over a discontinuous bottom given by the step function

B(x) =
{−2 if x ≤ 0.5,

−1.7 if x > 0.5,
(71)

Solutions computed up to t = 5 using 200 grid cells and different channel configurations
with parabolic contractions of up to 50 % at the narrowest section of the channel confirm the
well balance property of the scheme. In all cases the total height of the layers, wi (i = 1,2)
remains constant, and the deviations from rest of the flow velocities, ui (i = 1,2), are in
the order of 10−16, clearly produced by the round-off error in the computer’s arithmetic
operations.

3.1.2 Perturbation from Rest

Next, we test the behavior of the scheme when a small perturbation is added to the initial
profile of h2 in (69),

h2(x,0) =
{

1 + 10−5 if 0.1 < x < 0.2,

1 otherwise.
(72)

Figure 3 shows the initial conditions and several snapshots of the evolution of the pertur-
bation up to t = 0.26. Convergence to the trivial equilibrium solution, (69), is observed for
both bottom topographies, (70) and (71) and contractions of up to 50 %.

3.2 Interface Propagation

The following two examples are aimed at validating the ability of our scheme to capture
and propagate discontinuities over time. In both cases an initial jump on the height of the
interface between the two fluid layers, w1 = h1 +B , leads to a time dependent solution con-
sisting of four traveling waves. These examples have been widely used to validate schemes
for multilayer flows, [1, 7, 15]. The initial conditions for the first one are given by

(h1,Q1, h2,Q2) =
{

(0.5,1.25,0.5,1.25) if x < 0,

(0.55,1.375,0.45,1.125) if x > 0.
(73)

The channel is straight, σ(x) = 1, with a flat bottom placed at B(x) = −1 and extend-
ing over the interval x ∈ [0,1]. We approximate the solution over three different grids of
sizes �x = 1/400,1/800,1/10,000 and observe how the increased resolution allows us to
capture the sharp profile that characterizes the solution and reduces the amplitude of oscil-
lations. Figure 4 shows the elevation of the interface between the two layers, the velocity of
each layer, and the small displacement of the free surface of the flow caused by the propa-
gating discontinuities.
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Fig. 3 Evolution of the total height of the perturbed state of rest, (72), along channels with different config-
urations. Left: flow through a channel with a parabolic contraction with its narrowest point (50 %) located to
the right of the maximum elevation of the bottom topography given by (70). Right: parabolic contraction of
40 % located to the left of a step in the bottom of the channel, (71). Solutions computed with 200 grid cells
and CFL number 0.75

In the second example, we also consider a straight channel with a flat bottom, and the
initial conditions are given by the piecewise data

(h1,Q1, h2,Q2) =
{

(0.2,0,1.8,0) if x < 0

(1.8,0,0.2,0) if x > 0
(74)
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Fig. 4 First interface propagation problem. Top: left: interface elevation, right: free surface displacement.
Bottom: left: velocity of lower layer, right: velocity of upper layer. Solutions computed with CFL number 0.5

Fig. 5 First interface propagation problem. Left: interface elevation, right: free surface displacement. Solu-
tions computed with CFL number 0.75

In this case we compute the solution from x = −5 to x = 5 using grid sizes �x =
1/500,1/100,1/50. The results displayed in Fig. 5 confirm the ability of the proposed
scheme to locate and resolve the discontinuities in the solution.

3.3 Non-trivial Steady-States

In this section we investigate the ability of our scheme to capture accurately non-trivial
steady flows given by (11a)–(11c). Steady and quasi-steady flows occur commonly in nature
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(e.g., channel and river flows with constant discharge, strait flows between large steady
basins). Such flows are well modeled by system (1a)–(1d) and under the—reasonable—
rigid lid assumption, B + h1 + h2 = Const.—its actual displacement is of order O(1 − r),
one can calculate exact solutions for them, [1–3, 7, 8, 21, 27, 28]. These flows are fully
determined by the conditions at the inflow and outflow boundaries and the geometry of
the channel. That is, given B(x), σ(x), and the values Q1, Q2, hout

1 , and hout
2 , in addition

to the rigid lid value Ho = h1 + h2 + B , one can determined the flow conditions at each
point along the solution domain. The analysis of these flows is presented in great detail in
[2, 3, 8], and algorithms to calculate their rigid lid solutions are provided in [1, 21, 28].
We consider flows in three distinct regimes given by the value of the composite Froude
number, G2, (14): subcritical or fluvial flows, for which G2 < 1 along the entire channel,
and two types of transcritical flows, for which G2 changes from subcritical, G2 < 1, to
supercritical, G2 > 1, along the channel due to the varying geometry. Once a transcritical
flow reaches criticality, it may remain supercritical through the outflow boundary, or it may
jump back to subcritical conditions by dissipating energy through a shock (see Sect. 3.3.3).
Below, we consider all these different flow regimes along channels with varying geometries,
and compare the approximate solutions computed with our scheme with the generalized
rigid lid solutions.

3.3.1 Subcritical Flow

We first consider a subcritical flow along a straight channel extending over the interval x ∈
[−3,3] with

Q1 = −Q2 = −0.05, hout
1 (x) = −1.5 − B(x), and hout

2 = 0.5, (75)

and the bottom topography given by

B(x) = 0.85e−x2 − 2. (76)

We then add a contraction of the form

σ(x) = 1 − be−c(x−a)2
, (77)

for different values of a, b and c, while keeping the flow invariants, Q1, Q2, hout
1 , and hout

2 ,
unchanged, and observe the effect that the narrowing contraction and its change in location
(with respect to the highest bottom elevation) have in the flow. In all cases, the initial con-
ditions are set to the prescribed boundary values throughout the entire domain. The results
are presented in Figs. 6, 7 and 8.

3.3.2 Lock Exchange Flows

Next, we consider two exchange flows proposed in [7]. In the first problem the two layers
of water are initially at rest separated by a membrane. When the membrane is removed
and the two masses are allowed to flow, they do so in opposite directions. In the second
example, a less dense mass of water lays on top of a heavier one and both layers are initially
separated from two reservoirs at each end of the channel, when the membranes are removed
at t = 0, the two layers flow until they match the conditions of the corresponding layers at
each reservoir. These are known as lock exchange flows and they converge to steady-states
whose exact rigid lid solution, [2], can be computed with arbitrary accuracy, [21]. Lock
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Fig. 6 Left: profile of a subcritical flow along a straight channel. Right: detail of interface elevation (top),
and its relative error (bottom). Solutions calculated with 200 grid cells and CFL number 0.75

Fig. 7 Interface location for two subcritical flows running through the corresponding centered contractions
depicted above. Left: 25 % contraction. Right: 45 % contraction. Solutions calculated with 200 grid cells and
CFL number 0.75

Fig. 8 Interface location for two subcritical flows running through the corresponding shifted contractions
depicted above. Left: 45 % contraction with narrowest point located at x = −0.4. Right: 45 % contraction
with narrowest point located at x = 0.4. Solutions calculated with 200 grid cells and CFL number 0.75
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Fig. 9 Lock exchange flow. Left: Flow profile. Right: top: channel width, bottom: Froude numbers F 2
1 and

F 2
2 (solid lines), G2 (◦’s) from numerical solution, and G2 from rigid lid solution (×’s). Solutions calculated

with 200 grid cells and CFL number 0.75

exchange flows are characterized by the loss of strict hyperbolicity, [7], posing an additional
difficulty for calculating their numerical solutions, especially for schemes that require a
Riemann solver for their implementation. Our semi-discrete central scheme is particularly
well suited for simulating these flows as it only requires a bound such as (68) for the largest
external eigen value (which is always real) for its implementation.

In the first case, we simulate a maximal exchange flow (i.e., the exchange of momentum
between the layers is maximum for the given channel geometry) through a channel with
constant depth, B(x) = −1, and a contraction given by

σ(x) = 2 − e−x2/2. (78)

The initial conditions are given by

(h1,Q1, h2,Q2) =
{

(1,0,0,0) if x < 0,

(0,0,1,0) if x > 0,
(79)

and at each boundary we impose the condition Q1 = −Q2. Figure 9 displays the numerical
and rigid solutions for this flow along with the Froude numbers of the flow.

In the second lock exchange experiment we consider a flow through a channel extending
from x = −1 to x = 2 consisting of a combination of a sill described by

B(x) = 1

cosh2 (3.75x)
− 2, (80)

and a contraction given by

σ(x) = 0.5 + 1.5
(
1 − e−a2(x−1)2)

, with a =
{

0.637 if x ≤ 1,

1.273 if x > 1.
(81)

The initial conditions are set to

h1 = 1.3, h2 = 0.7, Q1 = Q2 = 0. (82)

At the left boundary, where the flow is supercritical, we set the discharge of the top layer, Q2,
to the value given by the rigid lid solver, and at the right end, where the flow is subcritical,
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Fig. 10 Lock exchange flow through a combination of a sill and a contraction. Left: Flow profile. Right: top:
channel width, bottom: Froude numbers F 2

1 and F 2
2 (solid lines), G2 (◦’s) from numerical solution, and G2

from rigid lid solution (×’s). Solution calculated with 300 grid cells and CFL number 0.75

we specify both discharges, and the elevation of each layer so as to match the conditions at
the reservoir as given by the rigid lid solver. The numerical solution is presented in Fig. 10
along with the rigid lid solution and the internal and composite Froude numbers for the flow.

3.3.3 Internal Dam Break

In this last experiment an internal dam break is simulated. The two layers, initially at rest
separated by a membrane, are left to flow through a channel extending over the interval
x ∈ [−5,5] with bottom topography

B(x) = 1.2e−2(x+1)2 − 2, (83)

and a contraction described by

σ(x) = 1 − 0.4e−(x−1)2/8. (84)

And the initial conditions are set to

(h1,Q1, h2,Q2) =
{

(max(0,−1.5 − B(x)),0,2 − h1 + B(x),0) if x < −1,

(1.5,0,0.5,0) if x > −1,
(85)

At the boundaries, we specify the values of h1, h2, Q1, and Q2 given by the rigid lid
solution. In this case the flow is subcritical at the right boundary, accelerates through the
contraction, with the upper layer nearly reaching criticality at that point, remaining subcrit-
ical until it flows over the top of the sill, and then connects to the subcritical conditions at
the left end by dissipating energy through a stationary shock. The flow presented in Fig. 11
demonstrate the ability of the proposed central scheme to locate and resolve the stationary
jump in the interface.

4 Conclusions

The numerical results presented in Sect. 3 demonstrate the robustness and versatility of the
proposed central schemes for computing the numerical solution of one-dimensional two-
layer shallow-water flows along channels with rectangular cross-section. The balance law
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Fig. 11 Internal dam break flow. Left: Flow profile. Right: top: channel width, bottom: Froude numbers
F 2

1 and F 2
2 (solid lines), G2 (◦’s) from numerical solution, and G2 from rigid lid solution (×’s). Solution

calculated with 300 grid cells and CFL number 0.75

(1a)–(1d) that models these flows includes non-conservative products that make the bal-
ancing of fluxes and sources more challenging than in one-layer flows, and renders a more
characteristic decomposition of the system, including the possible loss of hyperbolicity for
steady-state flows. Our results demonstrate that central schemes can handle these difficulties
robustly, and that they are particularly well suited to deal with the loss of hyperboliciy as
they only require an estimate of the maximum speed of propagation.
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Appendix A: Proof of Theorem 1

Proof (i) Starting with the initial conditions ui(x) = 0 (i = 1,2), w1(x) = W1 and
h2(x) = H2 for all x, we fix a space scale �x and the corresponding partition of the so-
lution domain, {Ij } := {[xj− 1

2
, xj+ 1

2
]}. We then define the cell averages of the conserved

quantities in the modified shallow-water model, (15a)–(15d), as

A
T

1,j := σ jw1,j = σ jW1 and A2,j := σ jh2,j = σ jH2 (86)

and

Q1,j := (
A

T

1,j − σ jBj

)
u1,j ≡ 0. (87a)

Q2,j := A2,j u2,j ≡ 0. (87b)

The reconstructed point values of w1 and h2, clearly satisfy w±
1,j± 1

2
= W1, h2,j± 1

2
= H2, and

those of Qi , Q±
j± 1

2
= 0 (i = 1,2), thus the values of the water heights (38) (and the corre-

sponding values of h2 recovered via the minmod reconstruction), and those of the bottom
topography at the cell interfaces, B∓

j± 1
2
, satisfy

h−
1,j+ 1

2
− h+

1,j− 1
2

= −(B−
j+ 1

2
− B+

j− 1
2

)
and h−

2,j+ 1
2
− h+

2,j− 1
2

= 0 (88)
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In view of this, the first and third components of the numerical fluxes Hj+ 1
2

in (22) read

−
H

(1)

j+ 1
2
− H

(1)

j− 1
2

�x
= − 1

2�x

[
aj+ 1

2
σj+ 1

2

(
w+

1,j+ 1
2
− w−

1,j+ 1
2

)− aj− 1
2
σj− 1

2

(
w+

1,j− 1
2
− w−

1,j− 1
2

)]

≡ 0 (89a)

−
H

(3)

j+ 1
2
− H

(3)

j− 1
2

�x
= − 1

2�x

[
aj+ 1

2
σj+ 1

2

(
h+

2,j+ 1
2
− h−

2,j+ 1
2

)− aj− 1
2
σj− 1

2

(
h+

2,j− 1
2
− h−

2,j− 1
2

)]

≡ 0. (89b)

That is,

d

dt
A

T

1,j (t) = 0 ⇒ A
T

1,j (t + �t) = A
T

1,j (t), (90a)

d

dt
A2,j (t) = 0 ⇒ A2,j (t + �t) = A2,j (t), (90b)

which allows us to recover w1,j (t + �t) = W1 and h2,j (t + �t) = H2 exactly from (86).
Noting that, according to (38), h+

1,j+ 1
2

= h−
1,j+ 1

2
=: h1,j+ 1

2
and that the minmod recon-

struction guarantees h+
2,j+ 1

2
= h−

2,j+ 1
2

=: h2,j+ 1
2
, the second and fourth components of the

numerical flux amount, respectively, to (40) and (41), and since (88) hold, they are balanced
by (48)–(51), therefore

d

dt
Qi,j (t) = 0 ⇒ Qi,j (t + �t) = Qi,j (t) = 0, i = 1,2. (91)

and ui,j (t + �t) ≡ 0 (i = 1,2) are also recovered exactly.

(ii) We begin by writing explicitly the cell average AT
1,j (t + �t) when the system (22) is

evolved with forward Euler’s ODE solver,

A
T

1,j (t + �t) = A
T

1,j (t) − λ
[
H

(1)

j+ 1
2
(t) − H

(1)

j− 1
2
(t)
]
, (92)

where λ = �t/�x. This amounts to

A
T

1,j (t + �t) = A
T

1,j (t) − λ

2

[(
Q+

1,j+ 1
2
+ Q−

1,j+ 1
2

)− aj+ 1
2

(
A

T,+
1,j+ 1

2
− A

T,−
1,j+ 1

2

)

− (
Q+

1,j− 1
2
+ Q−

1,j− 1
2

)+ aj− 1
2

(
A

T,+
1,j− 1

2
− A

T,−
1,j+ 1

2

)]
, (93)

(where all the terms on the right hand side are understood to be evaluated at time t ). Using
Q±

1,j± 1
2

= σ±
j± 1

2
h±

1,j± 1
2
u±

1,j± 1
2
, we write

A
T

1,j (t + �t) = A
T

1 (t) + λ

2

[(
aj+ 1

2
σj+ 1

2
− u+

1,j+ 1
2
σ+

j+ 1
2

)
h+

1,j+ 1
2

+ (
aj− 1

2
σj− 1

2
+ u−

1,j− 1
2
σ−

j− 1
2

)
h−

1,j− 1
2
+ aj+ 1

2
σj+ 1

2
B+

j+ 1
2
+ aj− 1

2
σj− 1

2
B−

j− 1
2

]
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− λ

2

[(
aj+ 1

2
σj+ 1

2
+ u−

1,j+ 1
2
σ−

j+ 1
2

)
h−

1,j+ 1
2
+ (

aj− 1
2
σj− 1

2
− u+

1,j− 1
2
σ+

j− 1
2

)
h+

1,j− 1
2

+ aj+ 1
2
σj+ 1

2
B−

j+ 1
2
+ aj− 1

2
σj− 1

2
B+

j− 1
2

]
. (94)

The terms involving σj± 1
2
B±

j± 1
2

and σj± 1
2
B∓

j± 1
2

on the right hand side cancel, and since

aj± 1
2
σj± 1

2
≥ |u±

1,j± 1
2
|σ±

j± 1
2
, (58), and h∓

1,j± 1
2

≥ 0, the CFL restriction (63) allows us to write

A
T

1,j (t + �t) ≥ A
T

1,j (t) − 1

2
σ j

(
h−

1,j+ 1
2
+ h+

1,j− 1
2

)= σ jBj , (95)

from where (64) follows. �

Appendix B: On the Semi-Discrete Central Formulation for Hyperbolic Systems
with Source Terms

The numerical scheme that we have presented in this work is based on the high-order semi-
discrete central formulation for hyperbolic conservation laws first introduced in [17]. Here
we outline the derivation of the equivalent semi-discrete formulation for hyperbolic systems
with source terms,

vt + f (v)x = S(v, x) (96)

Before we proceed, we should clarify that this derivation consists of three steps: stag-
gered evolution of cell averages, reprojection onto the original non-staggered grid, and the
evaluation of the limit as �t → 0 of the finite difference (vn+1

j − vn
j )/�t . A process that

requires the formulation of several intermediate solutions presented below, however, for
the actual implementation of the semi-discrete scheme one doesn’t need to calculate these
solutions; the intermediate solutions are only introduced formally so as to form the finite
difference and take the limit.

Starting with the cell averages {vn
j }j over the partition {Ij }j = {[xj− 1

2
, xj+ 1

2
]}j at time

t = tn, we use the estimates of the maximum speed of propagation, an

j+ 1
2
, to define

xn

j± 1
2 ,l

:= xj± 1
2
− an

j± 1
2
�t and xn

j± 1
2 ,r

:= xj± 1
2
+ an

j± 1
2
�t, (97)

and with these values we repartition the computational domain into two sets of cells: the
first set,

{Ĩj± 1
2
}j = {[

xn

j± 1
2 ,l

, xn

j± 1
2 ,r

]}
j
,

contains the neighborhood of the interfaces xj± 1
2

within which discontinuous solutions prop-
agate, the second set,

{Ĩj }j = {[
xn

j− 1
2 ,r

, xn

j+ 1
2 ,l

]}
j
,

contains the portion of the original cells where the solution remains smooth over the interval
[tn, tn+1] (consult Fig. 12). We then formulate two sets of staggered cell averages following
the recipe in [11] (a non-staggered extension of the original NT scheme proposed in [22])
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Fig. 12 Modified staggered central differencing and evolution

including, in our case, the contribution from the source term. These two sets of solutions
read:

ωn+1
j+ 1

2
= vn

j+1 + vn
j

2
+

�x − an

j+ 1
2
�t

4

(
(vx)

n
j+1 − (vx)

n
j

)− λ

2an

j+ 1
2

[
f
(
v

n+ 1
2

j+ 1
2 ,r

)− f
(
v

n+ 1
2

j+ 1
2 ,l

)]

+ λ

2an

j+ 1
2

∫ xn

j+ 1
2 ,r

xn

j+ 1
2 ,l

S
(
vn+ 1

2 (x), x
)
dx, (98)

ωn+1
j = vn

j + �t

2
(vx)

n
j − λ

1 − λ(an

j− 1
2
+ an

j+ 1
2
)

[
f
(
v

n+ 1
2

j+ 1
2 ,l

)− f
(
v

n+ 1
2

j− 1
2 ,r

)]

+ �t

�x − (an

j− 1
2
+ an

j+ 1
2
)�t

∫ xn

j+ 1
2 ,l

xn

j− 1
2 ,r

S
(
vn+ 1

2 (x), x
)
dx, (99)

where λ = �t
�x

. The midpoint values vn+ 1
2 (x) are approximated using Taylor’s theorem and

the balance law (96),

vn+ 1
2 (x) ≈ vn(x) + �t

2
vn

t (x) ≈ vn(x) − �t

2

[
f
(
vn(x)

)
x
− S

(
vn(x), x

)]
, (100)

the numerical derivatives (ux)
n
j via a minmod limiter,

(vx)
n
j = 1

�x
minmod

(
vn

j+1 − vn
j , v

n
j − vn

j−1

)
, (101)
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and the flux derivatives can be calculated as f (vn(x))x = A(v)vx , where A(v) = df

dv
is the

Jacobian matrix of f , or component by component as

f
(
vn(x)

)
x
= 1

�x
minmod

(
f
(
vn(x + �x)

)− f
(
vn(x)

)
, f
(
vn(x)

)− f
(
vn(x − �x)

))
.

(102)
A well-balance discretization of the integrals on the right hand side of (98) can be found in
[24].

From these staggered averages, we form the interpolant

R
(
x, tn+1

)=
∑

j

{[
ωn+1

j+ 1
2
+ (vx)

n+1
j+ 1

2
(x − xj+ 1

2
)
]
1[

xn

j+ 1
2 ,l

,xn

j+ 1
2 ,r

] + ωn+1
j 1[

xn

j− 1
2 ,r

,xn

j+ 1
2 ,l

]}

(103)
where the derivatives (vx)

n+1
j± 1

2
are also approximated with a minmod limiter

(vx)
n+1
j+ 1

2
= 2

�x
minmod

( ωn+1
j+1 − ωn+1

j+ 1
2

1 + λ(an

j+ 1
2
− an

j+ 3
2
)
,

ωn+1
j+ 1

2
− ωn+1

j

1 + λ(an

j− 1
2
− an

j+ 1
2
)

)
. (104)

This interpolant is then reprojected onto the original (non-staggered) grid, obtaining the
updated, non-staggered cell averages

vn+1
j = 1

�x

∫ x
j+ 1

2

x
j− 1

2

R
(
x, tn+1

)
dx = λan

j− 1
2
ωn+1

j− 1
2
+ [

1 − λ
(
an

j− 1
2
+ an

j+ 1
2

)]
ωn+1

j

+ λan

j+ 1
2
ωn+1

j+ 1
2
+ �x

2

[(
λan

j− 1
2

)2
(vx)

n+1
j− 1

2
− (

λan

j+ 1
2

)2
(vx)

n+1
j+ 1

2

]
. (105)

In order to arrive at the semi-discrete formulation from (105), we consider the limit

d

dt
vj (t) = lim

�t→0

vn+1
j − vn

j

�t
. (106)

To evaluate it, we write explicitly the finite difference using (105),

vn+1
j − vn

j

�t
=

an

j− 1
2

�x
ωn+1

j− 1
2
+
(

1

�t
−

an

j− 1
2
+ an

j+ 1
2

�x

)
ωn+1

j

+
an

j+ 1
2

�x
ωn+1

j+ 1
2
− 1

�t
vn

j + O(λ), (107)

and expand it making use of (98) and (99)

vn+1
j − vn

j

�t
=
{an

j− 1
2

2�x

(
vn

j−1 + vn
j

)+ 1

4
an
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2

(
(vx)

n
j−1 − (vx)

n
j

)

− 1

2�x

[
f
(
v

n+ 1
2

j− 1
2 ,r

)− f
(
v
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2

j− 1
2 ,l

)]+ 1

2�x

∫ xn
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2 ,r

xn

j− 1
2 ,l

S
(
vn+ 1

2 (x), x
)
dx

−
an

j− 1
2
+ an

j+ 1
2

�x
vn

j + 1

2

(
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2
+ an

j+ 1
2

)
(vx)

n
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− 1

�x

[
f
(
v

n+ 1
2
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2 ,l

)− f
(
v

n+ 1
2
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2 ,r

)]+ 1

�x
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2 ,l

xn
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[
f
(
v
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2
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2 ,r

)− f
(
v
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2�x

∫ xn
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2 ,r

xn
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2 ,l
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(
vn+ 1

2 (x), x
)
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}

+ O(λ). (108)

In the limit �t → 0, the midpoint interface values approach

v
n+ 1

2

j+ 1
2 ,r

→ vj+1(t) − �x

2
(vx)j+1(t) =: v+

j+ 1
2
(t),

v
n+ 1

2

j+ 1
2 ,l

→ vj (t) + �x

2
(vx)j (t) =: v−

j+ 1
2
(t),

(109)

and we obtain (22)–(23)

d

dt
vn

j (t) = −
Hj+ 1

2
− Hj− 1

2

�x
+ 1

�x

[
1

2

∫ x+
j− 1

2

x−
j− 1

2

S(v, x)dx +
∫ x−

j+ 1
2

x+
j− 1

2

S(v, x)dx

+ 1

2

∫ x+
j+ 1

2

x−
j+ 1

2

S(v, x)dx

]
(110)

with Hj± 1
2

given by (19) as desired.
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